AKT family and miRNAs expression in IL-2 induced CD4+T cells
نویسندگان
چکیده
OBJECTIVES Study of non-coding RNAs is considerable to elucidate principal biological questions or design new therapeutic strategies. miRNAs are a group of non-coding RNAs that their functions in PI3K/AKT signaling and apoptosis pathways after T cell activation is not entirely clear. Herein, miRNAs expression and their putative targets in the mentioned pathways were studied in the activated CD4(+)T cells. MATERIALS AND METHODS Herein, proliferation rate and IL-2 secretion were measured in treated and untreated cells by IL-2. Putative targets of up-regulated miRNAs were predicted by bioinformatics approaches in the apoptotic and PI3K/AKT signaling pathways. Then the expression of two putative targets was evaluated by quantitative RT-PCR. RESULTS Proliferation rate of treated cells by IL-2 increased in a dose- and time- dependent manner. Naive and activated CD4(+)T cells induced by different dose of IL-2 secreted abundant amounts of IL-2. Also, in IL-2 un-induced cells (IL-2 depleted cells) after 3 days, decrease of proliferation has been shown. In silico analysis predicted putative targets of up-regulated miRNAs such as AKT1, AKT3 and apoptotic genes in the activated cells induced or un-induced by IL-2. Decrease of AKT3 was shown by Q-RT-PCR as a potential target of miRNAs overexpressed in IL-2 depleted cells. But there was no significant difference in AKT1 expression in two cell groups. CONCLUSION Our analysis suggests that decrease of AKT3 was likely controlled via up-regulation of specific miRNAs in IL-2 depleted cells. Also it seems that miRNAs play role in induction of different apoptosis pathways in IL-2 induced and un-induced cells.
منابع مشابه
AKT family and miRNAs expression in IL-2-induced CD4+T cells
Objective(s): Study of non-coding RNAs is considerable to elucidate principal biological questions or design new therapeutic strategies. miRNAs are a group of non-coding RNAs that their functions in PI3K/AKT signaling and apoptosis pathways after T cell activation is not entirely clear. Herein, miRNAs expression and their putative targets in the mentioned pathways were studied in the activated ...
متن کاملHuman Leukocyte Antigen-G Expression on Dendritic Cells Induced by Transforming Growth Factor-β1 and CD4+ T Cells Proliferation
Background: During antigen capture and processing, mature dendritic cells (DC) express large amounts of peptide-MHC complexes and accessory molecules on their surface. DC are antigen-presenting cells that have an important role in tolerance and autoimmunity. The transforming growth factor-beta1 (TGF-β1) cytokine has a regulatory role on the immune and non-immune cells. The aim of this study is ...
متن کاملMiR-9-5p and miR-106a-5p dysregulated in CD4+ T-cells of multiple sclerosis patients and targeted essential factors of T helper17/regulatory T-cells differentiation
Objective(s): Multiple sclerosis (MS) is considered as a chronic type of an inflammatory disease characterized by loss of myelin of CNS.Recent evidence indicates that Interleukin 17 (IL-17)-producing T helper cells (Th17 cells) population are increased and regulatory T cells (Treg cells) are decreased in MS. Despite extensive research in understanding the mechanism of Th17 and Treg differentiat...
متن کاملmicroRNA-29a functions as a tumor suppressor in nasopharyngeal carcinoma 5-8F cells through targeting VEGF
Objective(s): microRNA-29 (miR-29) family miRNAs have been mentioned as tumor suppressive genes in several human cancers. The purpose of this study was to investigate the function of miR-29a in nasopharyngeal carcinoma (NPC) cells. Materials and Methods: Human NPC cell line 5-8F was transfected with mimic, inhibitor or scrambled controls...
متن کاملB and T Lymphocyte Attenuator is a Target of miR-155 during Naive CD4+ T Cell Activation
Background: MicroRNA-155 (miR-155) is upregulated during T cell activation, but the exact mechanisms by which it influences CD4+ T cell activation remain unclear. Objective: To examine whether the B and T lymphocyte attenuator (BTLA) is a target of miR-155 during naïve CD4+ T cell activation. Methods: Firefly luciferase reporter plasmids pEZX-MT01-wild-type-BTLA and pEZX-MT01-mutant-BTLA were ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 17 شماره
صفحات -
تاریخ انتشار 2014